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Characterization of Sequential Quantum Machines
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We further investigate some properties of sequential quantum machines (SQMs) and
introduce so-called quantum sequential machines (QSMs). In particular, the equivalence
between SQMs and QSMs is also presented. We give a counterexample to answer an
open problem proposed by S. Gudder recently.
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quantum machines.

1. INTRODUCTION

As theoretical models of quantum computation, quantum automata and more
complicated quantum machines have become an important research field (Bertoni
and Carpentieri, 2001; Gudder, 1999, 2000; Moore and Crutchfield, 2000; and see
Gruska, 1999, pp. 151-192 for the details). Recently, Gudder (2000) considered
sequential quantum machines (SQMs), which may be looked as a quantum variant
of stochastic sequential machines (SSMs) (Paz, 1971). As is well known, an im-
portant result on SSMs is that two SSMs witlandn’ states, respectively and the
same input and output alphabets are equivalent if and only if theyafen( — 1)-
equivalent (see Theorem 2.7 in Paz, 1971). So Gudder (2000) proposed an open
problem of whether it also holds for SQMs. More exactly Ndtand M’ be SQMs
with n andn’ states, respectively and the same input and output alphabets. Is it true
that M and M’ are equivalent (i.e pa(v | u) = par(v | u) for all wordsu, v) if
and only if paq(v | u) = par(Vv | u) for all wordsu, v with length not bigger than
n+ n" — 1? (See Gudder, 2000, p. 2159.) In this paper, a negative answer is given.

In Section 2, we first recall the definition of SQMs and then discuss the
relation between the extension of their transition amplitude functions and the
transition operators. Afterwards, we in Section 3 introduce quantum sequential
machines (QSMs), which may be more analogous to SSMs formally than SQMs. In
particular, we prove that the classes of SQMs and QSMs are exactly equivalent to
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each other (Theorem 2). Finally a counterexample is presented in Section 4 and
therefore the above problem proposed by Gudder is solved.

2. SEQUENTIAL QUANTUM MACHINES

Sequential quantum machines (SQMs) was considered by Gudder (2000), and
there so-called factorizable and strongly factorizable SQMs were also proposed. In
this section, we discuss the relation between the extension of transition amplitude
functions and the transition operattt that describes the evolution of states.

A SQM is a 5-tupleM = (S, s, |, O, 8), whereSiis a finite set of internal
statessy € Sisthe start statd,andO are finite input and output alphabets, respec-
tively, ands : | x Sx O x S— C is atransition amplitude functiosatisfying

D 8(x,8, Y, 08X, S, ¥, 1) = 8ss 1)
y,t

foreveryx € I, s, s’ € S. The symbok stands for complex conjugation adyl, is
the Kronecker deltd(x, s, y, t) is interpreted as the transition amplitude that SQM
M printsy and enters statieafter scanning in the current stats. In fact, there

is a natural extension (see Proposition 1 (ii)§db 1 * x S x O* x Shy letting

5(X1---Xm,S, yl...ym,t)

= ) 8, S Y1, S1)8(X2, St ¥2, %) 8 (Xms Sty Ymi 1) (2)
Sty Sm-1

andé(u, s, v, t) = 0 for |u| # |v|, where|u| and|v| denote the length of words
andv, andl* and O* represent the sets of all words oMeand O, respectively.
Then we have

Z (X1 Xmy S, Y1+ Ymi £)8(Xe -+ - Xm, S, Y1+ Ym, 1) = Os,s- (3)

Proof: By utilizing (1) repeatedly we obtain that
D 80 Xm S Y Y )8(Xa X, Sy Y2+ e+ Yo, 1)

= Z ( Z 5(X1,$,Y1,31)5(X2,81,YZ,@'“(S(Xm.Sm—LYm.t))

Sty Sm-1

X( > 80, S, Y1, $1)8(%2, 1, Y2, 89) -+ 8(Xmy Sy, Ym't)>

= Z Z Z (S(Xl, S, Y1, 31)8(X1, Sll Y1, S_]/_)* . 5(X21 S1, Y2, SQ)

Yo Ym U SLenSme1 sy, L, Sy

X 8(X21 Si! y27 Sé)* e S(va Sn-1, Ymv t)‘s(xma St/‘n—jj Yma t)*
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= > )Y 80,8 Y1 8)8(xa, S, Y1, )T - 80%2, 81, Y2, 2)

Y15 Ym-1 S15--,Sm-1 S],...,§,_1

X 8(X2, 1, Y2, )"+ Y 8(Xmy Sn—1, Y, )8 (Xms Shy_11 Yim 1)
Ymit

- Z Z Z 8(X1, S, Y1, S1)8(x1, S, y1, S1)*
yer Sm 4

-+ 8(Xm-1, Sm—2, Ym—1, t1)8(Xm—-1, Si_2» Ym—1, t1)*
== Z 8(X1, S, Y1, tm-1)8(X1, S, Y1, tm_1)*

Y1, tm-1

= 55'5’. O

Now we turn to dealing with the&ansition operator Uthat characterizes the
evolution of states. For convenience, we idengfgnd O* with two orthonormal
bases for some complex Hilbert spa¢ésand Ho-, respectively. That is to say,
Ho+- may be looked as a closed subspace spanne@*hyrurthermore Ho- is
isomorphic with

K=COHo®®Ho® - ®Q"Ho @ - --

whereHg is a finite dimensional Hilbert space whose basis vectors correspond to
the symbols inO. For anyx; - - - Xy € 1*, operatolU(Xy - - - Xm) : Hs ® Ho« —
Hs ® Ho- is defined by letting

Uk Xm)S®V = 80Xt Xm S Y1 Ym OL® VY- Ym  (4)

Y10 Ym )t

and extending tdéls ® Ho- by linearity and closure. A linear operafbion interior
product spaceH is called an isometry, if Tg|| = ||¢|| for anyp € H. Then we
have the following proposition.

Proposition 1. (i) U(xg--- Xn) is an isometry on H® Ho- if and only if (3)
holds.(ii) U(X1 - - - Xm) = U (Xm) - - - U (x1) if and only if (2) holds.

Proof: The proof of (i) is similar to Lemma 3.1 in Gudder (2000), so we omit it
and just prove (ii). If (2) holds, then according to (4) we have that

UX1: - Xm)S®V
= Y ) 8, S Y151 8(Xm St Y DE® Y1+ Yim

Yiseee Yot S1ye0,Sm
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Yo Y 84,8 Y1, S1) - 8(Xmo1, Sno2, Y1, Sm1)

Y1see0sYm-1 S1,-.-,Sm—-1
X U(Xm)Sm—1 @ VY1 - - Ym-1
Z Z 8(X11 S, yll Sl) e S(Xmiz, Sm—3, ymiz, S,n72)

Vi oYm2 StSm 2

X U (Xm)U (Xm-1)Sm—2 ® VY1 - - - Ym—2

= ZZ‘S(XL S, Y1, 81) - U(Xm) - - - U(X2)s1 ® Vi
i s

=UXm) - U(X)sQV.

Conversely, sincés® Vv : s € S,v € O*} is a pairwise orthogonal set, by (4) itis
easy to follow (2) from the above proof.0

Definition 1. Let M = (S, s, I, O, §) be a SQM. Then the probability of the
machine printing wordy - - - Y, € O*, having been inputted the word - - - X, €
| * is defined as

Pr(Ya - Ym | Xa-Xm) =D UG Xm)So @ £, S® Y1+ -+ Ym) >
S

From (4) and (2) it follows that
Paa(Yre Y | X Xm) = ) 18(Xa - Xm, S0, Y1+ - Y, S)I (5)

2
=31 > 8(xa 50, v, 81) -+ 8(m, Sn1, Y. 9)| -

S |S1--Sm-1

(6)

3. QUANTUM SEQUENTIAL MACHINES

In this section, we introduce a class of more intuitive quantum machines,
namelyquantum sequential machin€3SMs) and show the equivalence between
SQMs and QSMs.

Definition 2. A QSM is 5-tupleM = (S, ni,, |, O, {A(y | X) : y € O, x € |}),
whereS= {s;, %, ..., &} is a finite set of internal stateg;, = (0---1---0)T is
a degenerate stochastic column vecton dfimension, that is, thiath entry is 1;
I andO are input and output alphabets, respectivélgy | x) is ann x n matrix
satisfying

DAY A X)) =1 7

yeO
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foranyx € |, where the symbaol denotes Hermitian conjugate operation &l
unit matrix.

Suppose thaf\(y | x) = [aj(y | X)], thenay;(y | x) and|a;; (y | x)|* are the
transition amplitude and probability th&t printsy and enters stasg, having been
in states and scanned, respectively. Therefore, the probability tht printsy
and enters some states after scanmifigthe current stats,, is Zj |ai,j (Y | X)[2.
Usually, in the current statg, upon receiving a word; - - - Xy, M first scans¢
and then printy;, while entering some state; under this state, after scamajniyt
printsy, and enters some state again; according to this progdssoes not stop
until all input symbols have been scanned. So

D a1 | XAk (Y2 | X2) -+ 8k yy (Y | Xim)
k1 ..... km—l

denoted bya;j(y1-- - Ym | X1 - - - Xm), is the transition amplitude that1 prints
y1---Ym and enters stats; after scanning; - - - Xm Step-by-step in the current
states. Denote

AL - Ym | X1+ Xm) = A(Y1 | X1) -+ - A(Ym | Xm)
then by induction one can easily get that indeed
Alyr---Ym [ Xe---Xm) = [@&j (Y1 - Ym | X1+ - Xm)].

The probability of the above QSMA printing the wordys - - - ym having been
inputted the word; - - - Xy, is naturally defined as

p/\/l(yl"'Ym|X1"'Xm)=Z|ai0j(YI"'Ym | Xl"'Xm)|2- (8)
i

By a direct calculation it follows that
Pa(Yr- - Ym [ X1+ -+ Xm)
=00 AL Y | Xe Xm)AYL - Y | X+ Xm) i 9
= [ Ay Y e X | (10)
where the symbol T denotes the transpose operation.
Definition 3. Two machines (SQMs or QSMg)(; and M with the same input

and output alphabets are called equivalenp,if, (v | u) = pa,(v | u) for any
input—output pairy, v).

Theorem 2. For any SQMM there is a corresponding QSM1’ with the same
input and output alphabets, such th&t and M’ are equivalent, and vice versa.
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Proof: Let SQM M = (S, s,, 1, 0,8), where S={s, ..., s,}. Then we
can construct a QSMM’ = (S, ni,, I, O, {A(y | X) : y € O, x € |}), where
Ay | X) = [aij(y | X)]andaj(y | X) = 8(X, s, Y, Sj). Firstwe checkthai(y | x)
satisfies (7). Sincé satisfies (1), we have that

DAY XAy [ X)f
y

_(S(X,Sl, Y, Sl) 8(X,Sl, Y, Sn) a(X,Sj_, Y, sl) 8()(!51’ Y, Sﬂ) f
=D, : : : : : :
y _S(X!Shyr S]_) S(X!Shyr s‘l) S(XIShyl Sﬂ.) 5(X1$11yy sﬂ)
S 18X, s, Y, S)I? cee 8%, St YL S)S(X, Sny YL )
= : : :
VL8, s, Y, SO8(K, St Y, S)F - S 18(X, s, Y 012

=1l
Next by induction we aim to prove that

Alyr | X1) -+« A(Ym | Xm) = [bij] (11)
wherebi; = 8(Xy- - Xm, S, Y1 - - Ym, Sj). Therefore, we have that
AlYr - Ym | X1 Xm) = [8(X1 - Xm, S, Y1+ Ym, )] (12)

Indeed, ifm = 2, then
Aly1Yz | X1%2) = A1 | X)) A(Yz2 | X2)

r8(X1, St, Y1, S1) -+ 8(X1, S, Y1, Sn) ] (X2, Sty Y2, S1) -+ 8(X2, S1, Yo, Sn)
L804Sy s) 1 80 sy ) Lo0e s e s) 1 80k s, o, )
(30 8(x1, 81, ¥1,8)8(X2, S, Y2, 81) -+ X 8(%a, St V1, §)30%2, S, V2, Sn):|
L2000 s Y1, 8)8(%2, S, Y2o 81) o0 X0 8(%as Sy Y, S1)8(X2, S, Y, Sn)
[8(X1X2, St, Y1Y2,S1) -+ 8(X1X2, S1, Y1Y2, Sn)

- = [6(X1X2, S, Y1Y2, Sj)].
| 8(X1X2, Sny YiY2, S1) -+ 8(X1X2, Shy VY2, Sh)

Suppose that it holds for the case— 1, then
Alyr - Ym I X2+ Xm) = (A(Y1 | X2) - - - A(Ym=1 | Xm=1)) A(Ym | Xm)
S(X1- - Xm—1,SL, Y1+ Ym-1,S1) -+ 8(X1- - Xm—1,S1, Y1+ Ym—1, Sn)

(X1 Xm—1,Sn Y1 - Ym—1,S1) -+ O(X1- Xm—1,S, Y1 Ym—1, Sn)
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8(Xm, S, Ym, S1) -+ 8(Xm, Sty Ym, Sn)
X : : :

8(Xm, Sny Ym, S1) -+ 8(Xmy Sny Yms Sn)

(XL - Xm,St, Y1+ YmiS1) -+ 8(X1---XmySL Y- Ym, Sn)
S(Xe-- Xmy Sy Y1 YmiS1) oo 8(Xa e+ Xmy Sy Y Ym, Sn)

=[6(X1 " Xm, S, Y1 Ym, Sj)]-
So (11) and (12) hold. By combining (5) and (8) with (12) we obtain that

PV Y [ Xa - Xm) = D [8(Xa -+ Xm, S Y1+ - Y, §) |
i

= ” A(Y1---Ym Xl"'Xm)TWio”2
= par(Yr---Ym | X1+ - Xm).

Conversely, suppose that QM&! = (S, ni,, |, O, {A(y | X) :y € O, x €
I'}) whereS = {sy, ..., s}, then we can constructa SQMt' = (S, s, |, O, §),
such that

5(x,8,Y,8) =aj(y | x)

foranyx € I,y € O. The rest of the process is similar to the preceding proof, so
we omit it and, therefore, complete the proof of lemmal

4. ACOUNTEREXAMPLE

Itis our main purpose in this section to construct a counterexample outlining
the differences between SSMs and SQMs (or QSMs), and particularly answering
the question proposed by Gudder (2000). Let us recall that problem agaitv{{Let
and M, be SQMs or QSMs with; andn, states, respectively, and the same input
and output alphabets. Is it true th&t; and M are equivalent ifpaq, (v | U) =
pa, (v | u) for allinput—output paird, v) with length not bigger than; + n, — 1?

It follows that the answer is negative from the following example.

Example 1. Let] = {0, 1}, O = {a, b, c}. Suppose that
Mi=({sohn, 1,0, {Ay|x):ye O, xel})
and

Mz =({s1, %}, 11, I, O, {A(y | X) : ye O, x e 1})
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whereAs(a | 0) = Ai(b | 0) = v/2/2, A(c|0)=0,A(c| 1) =1,A (al 1) =
Ai(b]1)=0,n=1;and

Az(aw):%[fz—ﬁi 1+ 3i }

—1+V3 V2+ 2

Az(b|0)=A2(a|o)*=%[ﬁ+~/?i 1- V3 }

—1-V3 V2-2i

A 0 A 1 A1 0 0
2Cl10)=Axall)=Axb|1)= o ol
11141 1-—i

AZ(C|1):§[1—i 1+i]

We first check thatM; and M5 are exactly QSMs, that ishy(y | x) and
Ax(y | X) satisfy (7):

V2 V2 V2 2
;Al(woml(ym)f:?x7+7X7:1;

Ay I DAY | D) = Aie | DA | 1) = 1;
y

> Aoly | 0)Ax(y | 0)f
y

_1[f2—«/§i 1+4/3 Hﬁw/ii —1—\/§i}

T 16| -14+v3 V2+V2 | [1-VE  V2- 2
1 [vV2+v2 1-3i V22 143
16| —1—-v3 V2-+2 ||14vV3 V242

1|8 0] 18 0] (10

=16|o 8|t 16]0 8| |0 1|’
poAfr+i 1-i) -0 1+

XV:Az(Y|1)A2(Y|1)_4|:1_i T4+i [|14i 1-i

BRI e

AR
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SoM; and M5 are QSMs. Next we show thaiy, (v | u) = pay, (v | u) for all
wordsu, v with |u| = |v| < 2. Because of

1[(V2+V2 -1-3i
1-4/3i  J/2-2

1(V2-V2 -1+3
41143 V242
[3-V3  —v2(1+1)]
| V2(1—i) 3+ 3 ’
Ax(b | 0)f Ax(a | 0)F = (Az(a] 0)' Az(b | 0)')*
1[3+V3 —v201-1)]
8|v2a+i) 3-v3 |
1 2-2 —V2+V3)]
8| v2(1- V3i) —2-2i ’
Ax(b | 0)' Az(b | 0)F = (Ax(a | 0) Ax(a | 0)F)*
1[ 2+a2 —V2(1—-V3i) ]
| V2(1+ V3i) —2+2i '

Ax(a| 0) Ax(b | 0)f = {

(e Bl o

Ax(a | 0) Ax(a| 0)f =

8
Ao(c| 1) Ax(c| 1) = [ }

Ax(a | 0) Ax(c | 1)f

C1[(@V2—-1+V3)— (1+V3)i —(1+\/§)+(2\/§—~/§+1)i}
8|(2v2+1-v3)—(1+3) 1+v3-(2v2+v3-1)i |
As(c| 1) Ax(a | 0)f
_1[@VZ+1+V3)+ 1 - V3 zﬁ—(1+¢é)+(1—ﬁ)i]
8l(1-v3)+(@vV2-1-v3) -1+v3-(2V2+1+3)i|
Ao(b | 0) Ag(c | 1)

1[-@+v3) - (2vV2+1—V3) —(1+«/§)+(2«/§—1+«/§)i]
8| 1+V3)+(2v2-1+V3)i  (2v2+1-3)+(1+V3)
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| 1) Ax(b | O)f

1[ 1-V3-@2vV2-1-V3)  —1+V3+@2V2+1+/3)
V2+1+V3)+(—1+V3)i (vV2—-1—-V3)+(-1+3)i |’

we obtain that

Prt,(@D ] 00) = [ Ax(b | 0)' Acfa | O)!mll> = 5 = Py (b 00),
(b2 ] 00) = | Ax(a | 0)' Ag(b | 0) il = § = pa,(ba| 00),
Prr.(aa] 00) = 1 Ax(a ] 0)f Ao(a | )/l = § = P (@l 00),
Pt (BB 00) = | A2(b | 0)' Axlb | 0) s = ; = P (bb | 00)
Pata(Ce | 11) = [[Az(c | 1) Ao(c | 1) mill* = 1 = pasy(ce] 11),

(261 01) = [1Ag(c | 1! Ar(a | 0)malP = 3 = pas(ac| 01)
pars(cal 10) = 1 Ax(a | 0)' A(e | lmlP = 5 = pas,(cal 10),
pars(bS | 01) = | Ao(c | 1)/ Aol )1l = 5 = P, (b | OD),
pats(eh | 10) = [ Ao(b | 0)' Ao(c | )l = 3 = pas,(eb] 10),

andpay, (V | u) = pa,(v | u) = 0 for the rest cases witli| = |v| = 2. For|u| =
[v| = 1, itis easy to check thair, (V | U) = pag,(V | U), and we omit the details.
However, we shall show thaty,(cabb| 1000)# pa4, (cabb| 1000). Indeed, we
have that

Ax(b | 0) Ax(b | 0)' Ax(c | 0)f Ax(c | 1)F

T 32

8| V2(1+ V3i) —242i
1 [(2\/2—1+x/§)—(1+\/§)i ~1+V3)+(2vV2- 3+ 1)1

1[ 242 —«/5(1—«/§i):|

"8 V24 1-VA) =L+ V3 1+3— (V243 L)

1[3V2+2V3+v6-2 2/3-V6-2-2
V64+2/3-V2+2 3/2-2/3-6-2
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1 [(Jé+2¢§+ﬂ— 2 (BvV2- 2¢§+J6+2)i]
32| (38V2+2V3-V6+2)i (2V3-V6+2+2)i |
So we obtain that
p,(cabb| 1000)
= [l Ax(b | 0)" Az(b | 0) Ao(c | 0) Ax(c | 1) 12

1 (3ﬁ+2ﬁ+dé—2+(Jé+2«/§+«/§—2)i)H2

32\V6+2/3— V2+2+ (342 +2V/3— V6 + 2)i
_ 84+6+42
- 64 ’
but
2 2 2 1
pa, (cabb| 1000)= g X g X % x 1 = g

Therefore, the answer for the problem proposed by S. Gudder is negative.
Certainly, there is positive example as follows.

Example 2. Let| = {0} andO = {a, b}. Suppose that
Mi=({sh,n, 1, O, {Aly|x):ye O,x e l})
and
Mz =({s1, %2}, 1, 1, O, {A(y | X) 1y € O, x € 1})
wheren = 1, Ai(a | 0) = 1/2, Ay(b | 0) = +/3/2; and
Axa|0)= ? |:i _11] , Asb|0)= ? |:i _11] .
Then one can check thatv, (v | u) = pag,(v | u) for all input—output pairyg, v).
That is to say,M1 and M, are equivalent.

However, we do not know yet what are the sufficient and necessary conditions
for the equivalence between two SQMs or QSMs.
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