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We further investigate some properties of sequential quantum machines (SQMs) and
introduce so-called quantum sequential machines (QSMs). In particular, the equivalence
between SQMs and QSMs is also presented. We give a counterexample to answer an
open problem proposed by S. Gudder recently.
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1. INTRODUCTION

As theoretical models of quantum computation, quantum automata and more
complicated quantum machines have become an important research field (Bertoni
and Carpentieri, 2001; Gudder, 1999, 2000; Moore and Crutchfield, 2000; and see
Gruska, 1999, pp. 151–192 for the details). Recently, Gudder (2000) considered
sequential quantum machines (SQMs), which may be looked as a quantum variant
of stochastic sequential machines (SSMs) (Paz, 1971). As is well known, an im-
portant result on SSMs is that two SSMs withn andn′ states, respectively and the
same input and output alphabets are equivalent if and only if they are (n+ n′ − 1)-
equivalent (see Theorem 2.7 in Paz, 1971). So Gudder (2000) proposed an open
problem of whether it also holds for SQMs. More exactly, letM andM′ be SQMs
with n andn′ states, respectively and the same input and output alphabets. Is it true
thatM andM′ are equivalent (i.e.,pM(v | u) = pM′ (v | u) for all wordsu, v) if
and only if pM(v | u) = pM′ (v | u) for all wordsu, v with length not bigger than
n+ n′ − 1? (See Gudder, 2000, p. 2159.) In this paper, a negative answer is given.

In Section 2, we first recall the definition of SQMs and then discuss the
relation between the extension of their transition amplitude functions and the
transition operators. Afterwards, we in Section 3 introduce quantum sequential
machines (QSMs), which may be more analogous to SSMs formally than SQMs. In
particular, we prove that the classes of SQMs and QSMs are exactly equivalent to
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each other (Theorem 2). Finally a counterexample is presented in Section 4 and
therefore the above problem proposed by Gudder is solved.

2. SEQUENTIAL QUANTUM MACHINES

Sequential quantum machines (SQMs) was considered by Gudder (2000), and
there so-called factorizable and strongly factorizable SQMs were also proposed. In
this section, we discuss the relation between the extension of transition amplitude
functionδ and the transition operatorU that describes the evolution of states.

A SQM is a 5-tupleM = (S, s0, I , O, δ), whereS is a finite set of internal
states,s0 ∈ Sis the start state,I andO are finite input and output alphabets, respec-
tively, andδ : I × S× O × S→ C is atransition amplitude functionsatisfying∑

y,t

δ(x, s, y, t)δ(x, s′, y, t)∗ = δs,s′ (1)

for everyx ∈ I , s, s′ ∈ S. The symbol∗ stands for complex conjugation andδs,s′ is
the Kronecker delta.δ(x, s, y, t) is interpreted as the transition amplitude that SQM
M prints y and enters statet after scanningx in the current states. In fact, there
is a natural extension (see Proposition 1 (ii)) ofδ to I ∗ × S× O∗ × Sby letting

δ(x1 · · · xm, s, y1 · · · ym, t)

=
∑

s1,...,sm−1

δ(x1, s, y1, s1)δ(x2, s1, y2, s2) · · · δ(xm, sm−1, ym, t) (2)

andδ(u, s, v, t) = 0 for |u| 6= |v|, where|u| and|v| denote the length of wordsu
andv, and I ∗ andO∗ represent the sets of all words overI andO, respectively.
Then we have∑

y1,...,ym,t

δ(x1 · · · xm, s, y1 · · · ym, t)δ(x1 · · · xm, s′, y1 · · · ym, t)∗ = δs,s′ . (3)

Proof: By utilizing (1) repeatedly we obtain that∑
y1,...,ym,t

δ(x1 · · · xm, s, y1 · · · ym, t)δ(x1 · · · xm, s′, y1 · · · ym, t)∗

=
∑

y1,...,ym,t

( ∑
s1,...,sm−1

δ(x1, s, y1, s1)δ(x2, s1, y2, s2) · · · δ(xm, sm−1, ym, t)

)

×
 ∑

s′1,...,s′m−1

δ(x1, s′, y1, s′1)δ(x2, s′1, y2, s′2) · · · δ(xm, s′m−1, ym, t)

∗

=
∑

y1,...,ym,t

∑
s1,...,sm−1

∑
s′1,...,s′m−1

δ(x1, s, y1, s1)δ(x1, s′, y1, s′1)∗ · δ(x2, s1, y2, s2)

× δ(x2, s′1, y2, s′2)∗ · · · δ(xm, sm−1, ym, t)δ(xm, s′m−1, ym, t)∗
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=
∑

y1,...,ym−1

∑
s1,...,sm−1

∑
s′1,...,s′m−1

δ(x1, s, y1, s1)δ(x1, s′, y1, s′1)∗ · δ(x2, s1, y2, s2)

× δ(x2, s′1, y2, s′2)∗ · · ·
∑
ym,t

δ(xm, sm−1, ym, t)δ(xm, s′m−1, ym, t)∗

=
∑

y1,...,ym−2

∑
t1

∑
s1,...,sm−2

∑
s′1,...,s′m−2

δ(x1, s, y1, s1)δ(x1, s′, y1, s′1)∗

· · · δ(xm−1, sm−2, ym−1, t1)δ(xm−1, s′m−2, ym−1, t1)∗

= · · · =
∑

y1,tm−1

δ(x1, s, y1, tm−1)δ(x1, s′, y1, tm−1)∗

= δs,s′ . ¤

Now we turn to dealing with thetransition operator Uthat characterizes the
evolution of states. For convenience, we identifySandO∗ with two orthonormal
bases for some complex Hilbert spacesHS andHO∗ , respectively. That is to say,
HO∗ may be looked as a closed subspace spanned byO∗. Furthermore,HO∗ is
isomorphic with

K = C⊕ HO ⊕⊗2HO ⊕ · · · ⊕ ⊗n HO ⊕ · · ·

whereHO is a finite dimensional Hilbert space whose basis vectors correspond to
the symbols inO. For anyx1 · · · xm ∈ I ∗, operatorU (x1 · · · xm) : HS⊗ HO∗ →
HS⊗ HO∗ is defined by letting

U (x1 · · · xm)s⊗ v =
∑

y1,...,ym,t

δ(x1 · · · xm, s, y1 · · · ym, t)t ⊗ vy1 · · · ym (4)

and extending toHS⊗ HO∗ by linearity and closure. A linear operatorT on interior
product spaceH is called an isometry, if‖Tϕ‖ = ‖ϕ‖ for anyϕ ∈ H . Then we
have the following proposition.

Proposition 1. (i) U (x1 · · · xm) is an isometry on HS⊗ HO∗ if and only if (3)
holds.(ii) U (x1 · · · xm) = U (xm) · · ·U (x1) if and only if (2) holds.

Proof: The proof of (i) is similar to Lemma 3.1 in Gudder (2000), so we omit it
and just prove (ii). If (2) holds, then according to (4) we have that

U (x1 · · · xm)S⊗ v

=
∑

y1,...,ym,t

∑
s1,...,sm

δ(x1, s, y1, s1) · · · δ(xm, sm−1, ym, t)t ⊗ y1 · · · ym
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=
∑

y1,...,ym−1

∑
s1,...,sm−1

δ(x1, s, y1, s1) · · · δ(xm−1, sm−2, ym−1, sm−1)

×U (xm)sm−1⊗ vy1 · · · ym−1

=
∑

y1,...,ym−2

∑
s1,...,sm−2

δ(x1, s, y1, s1) · · · δ(xm−2, sm−3, ym−2, sm−2)

×U (xm)U (xm−1)sm−2⊗ vy1 · · · ym−2

= · · · =
∑

y1

∑
s1

δ(x1, s, y1, s1) ·U (xm) · · ·U (x2)s1⊗ vy1

= U (xm) · · ·U (x1)s⊗ v.

Conversely, since{s⊗ v : s ∈ S, v ∈ O∗} is a pairwise orthogonal set, by (4) it is
easy to follow (2) from the above proof.¤

Definition 1. LetM = (S, s0, I , O, δ) be a SQM. Then the probability of the
machine printing wordy1 · · · ym ∈ O∗, having been inputted the wordx1 · · · xm ∈
I ∗ is defined as

pM(y1 · · · ym | x1 · · · xm) =
∑

s

|〈U (x1 · · · xm)s0⊗ ε, s⊗ y1 · · · ym〉|2.

From (4) and (2) it follows that

pM(y1 · · · ym | x1 · · · xm) =
∑

s

|δ(x1 · · · xm, s0, y1 · · · ym, s)|2 (5)

=
∑

s

∣∣∣∣∣ ∑
s1,...,sm−1

δ(x1, s0, y1, s1) · · · δ(xm, sm−1, ym, s)

∣∣∣∣∣
2

.

(6)

3. QUANTUM SEQUENTIAL MACHINES

In this section, we introduce a class of more intuitive quantum machines,
namelyquantum sequential machines(QSMs) and show the equivalence between
SQMs and QSMs.

Definition 2. A QSM is 5-tupleM = (S, ηi0, I , O, {A(y | x) : y ∈ O, x ∈ I }),
whereS= {s1, s2, . . . , sn} is a finite set of internal states;ηi0 = (0 · · ·1 · · ·0)T is
a degenerate stochastic column vector ofn dimension, that is, thei0th entry is 1;
I andO are input and output alphabets, respectively;A(y | x) is ann× n matrix
satisfying ∑

y∈O

A(y | x)A(y | x)† = I (7)
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for anyx ∈ I , where the symbol† denotes Hermitian conjugate operation andI is
unit matrix.

Suppose thatA(y | x) = [ai j (y | x)], thenai j (y | x) and|ai j (y | x)|2 are the
transition amplitude and probability thatMprintsy and enters statesj , having been
in statesi and scannedx, respectively. Therefore, the probability thatM prints y
and enters some states after scanningx in the current statesi0, is

∑
j |ai0 j (y | x)|2.

Usually, in the current statesi , upon receiving a wordx1 · · · xm,M first scansx1

and then printsy1, while entering some state; under this state, after scanningx2,M
prints y2 and enters some state again; according to this process,M does not stop
until all input symbols have been scanned. So∑

k1,...,km−1

aik1(y1 | x1)ak1k2(y2 | x2) · · ·akm−1 j (ym | xm)

denoted byai j (y1 · · · ym | x1 · · · xm), is the transition amplitude thatM prints
y1 · · · ym and enters statesj after scanningx1 · · · xm step-by-step in the current
statesi . Denote

A(y1 · · · ym | x1 · · · xm) = A(y1 | x1) · · · A(ym | xm)

then by induction one can easily get that indeed

A(y1 · · · ym | x1 · · · xm) = [ai j (y1 · · · ym | x1 · · · xm)].

The probability of the above QSMM printing the wordy1 · · · ym having been
inputted the wordx1 · · · xm is naturally defined as

pM(y1 · · · ym | x1 · · · xm) =
∑

j

|ai0 j (y1 · · · ym | x1 · · · xm)|2. (8)

By a direct calculation it follows that

pM(y1 · · · ym | x1 · · · xm)

= ηT
i0 A(y1 · · · ym | x1 · · · xm)A(y1 · · · ym | x1 · · · xm)†ηi0 (9)

= ∥∥A(y1 · · · ym | x1 · · · xm)ηi0

∥∥2
(10)

where the symbol T denotes the transpose operation.

Definition 3. Two machines (SQMs or QSMs)M1 andM2 with the same input
and output alphabets are called equivalent ifpM1(v | u) = pM2(v | u) for any
input–output pair (u, v).

Theorem 2. For any SQMM there is a corresponding QSMM′ with the same
input and output alphabets, such thatM andM′ are equivalent, and vice versa.
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Proof: Let SQM M = (S, si0, I , O, δ), where S= {s1, . . . , sn}. Then we
can construct a QSMM′ = (S, ηi0, I , O, {A(y | x) : y ∈ O, x ∈ I }), where
A(y | x) = [ai j (y | x)] andai j (y | x) = δ(x, si , y, sj ). First we check thatA(y | x)
satisfies (7). Sinceδ satisfies (1), we have that∑

y

A(y | x)A(y | x)†

=
∑

y

δ(x, s1, y, s1) · · · δ(x, s1, y, sn)
...

...
...

δ(x, sn, y, s1) · · · δ(x, sn, y, sn)


δ(x, s1, y, s1) · · · δ(x, s1, y, sn)

...
...

...
δ(x, sn, y, s1) · · · δ(x, sn, y, sn)


†

=
∑

y


∑

k |δ(x, s1, y, sk)|2 · · · ∑
k δ(x, s1, y, sk)δ(x, sn, y, sk)∗

...
...

...∑
k δ(x, sn, y, sk)δ(x, s1, y, sk)∗ · · · ∑

k |δ(x, sn, y, sk)|2


= I .

Next by induction we aim to prove that

A(y1 | x1) · · · A(ym | xm) = [bi j ] (11)

wherebi j = δ(x1 · · · xm, si , y1 · · · ym, sj ). Therefore, we have that

A(y1 · · · ym | x1 · · · xm) = [δ(x1 · · · xm, si , y1 · · · ym, sj )]. (12)
Indeed, ifm= 2, then

A(y1y2 | x1x2) = A(y1 | x1)A(y2 | x2)

=


δ(x1, s1, y1, s1) · · · δ(x1, s1, y1, sn)

...
...

...

δ(x1, sn, y1, s1)
... δ(x1, sn, y1, sn)



δ(x2, s1, y2, s1) · · · δ(x2, s1, y2, sn)

...
...

...

δ(x2, sn, y2, s1)
... δ(x2, sn, y2, sn)



=


∑

i δ(x1, s1, y1, si )δ(x2, si , y2, s1) · · · ∑
i δ(x1, s1, y1, si )δ(x2, si , y2, sn)

...
...

...∑
i δ(x1, sn, y1, si )δ(x2, si , y2, s1) · · · ∑

i δ(x2, sn, y2, s1)δ(x2, si , y2, sn)



=

δ(x1x2, s1, y1y2, s1) · · · δ(x1x2, s1, y1y2, sn)
...

...
...

δ(x1x2, sn, y1y2, s1) · · · δ(x1x2, sn, y1y2, sn)

 = [δ(x1x2, si , y1y2, sj )].

Suppose that it holds for the casem− 1, then

A(y1 · · · ym | x1 · · · xm) = (A(y1 | x1) · · · A(ym−1 | xm−1))A(ym | xm)

=

δ(x1 · · · xm−1, s1, y1 · · · ym−1, s1) · · · δ(x1 · · · xm−1, s1, y1 · · · ym−1, sn)
...

...
...

δ(x1 · · · xm−1, sn, y1 · · · ym−1, s1) · · · δ(x1 · · · xm−1, sn, y1 · · · ym−1, sn)





P1: FHD/GCQ/LZX P2:

International Journal of Theoretical Physics [ijtp] pp464-ijtp-372227 May 30, 2002 10:34 Style file version May 30th, 2002

Characterization of Sequential Quantum Machines 817

×

δ(xm, s1, ym, s1) · · · δ(xm, s1, ym, sn)
...

...
...

δ(xm, sn, ym, s1) · · · δ(xm, sn, ym, sn)



=

δ(x1 · · · xm, s1, y1 · · · ym, s1) · · · δ(x1 · · · xm, s1, y1 · · · ym, sn)
...

...
...

δ(x1 · · · xm, sn, y1 · · · ym, s1) · · · δ(x1 · · · xm, sn, y1 · · · ym, sn)


= [δ(x1 · · · xm, si , y1 · · · ym, sj )].

So (11) and (12) hold. By combining (5) and (8) with (12) we obtain that

pM(y1 · · · ym | x1 · · · xm) =
∑

i

∣∣δ(x1 · · · xm, si0, y1 · · · ym, si
)∣∣2

= ∥∥A(y1 · · · ym | x1 · · · xm)†ηi0

∥∥2

= pM′ (y1 · · · ym | x1 · · · xm).

Conversely, suppose that QMSM = (S, ηi0, I , O, {A(y | x) : y ∈ O, x ∈
I }) whereS= {s1, . . . , sn}, then we can construct a SQMM′ = (S, si0, I , O, δ),
such that

δ(x, si , y, sj ) = ai j (y | x)

for anyx ∈ I , y ∈ O. The rest of the process is similar to the preceding proof, so
we omit it and, therefore, complete the proof of lemma.¤

4. A COUNTEREXAMPLE

It is our main purpose in this section to construct a counterexample outlining
the differences between SSMs and SQMs (or QSMs), and particularly answering
the question proposed by Gudder (2000). Let us recall that problem again. LetM1

andM2 be SQMs or QSMs withn1 andn2 states, respectively, and the same input
and output alphabets. Is it true thatM1 andM2 are equivalent ifpM1(v | u) =
pM2(v | u) for all input–output pair (u,v) with length not bigger thann1+ n2− 1?
It follows that the answer is negative from the following example.

Example 1. Let I = {0, 1}, O = {a, b, c}. Suppose that

M1 = ({s0}, η, I , O, {A(y | x) : y ∈ O, x ∈ I })
and

M2 = ({s1, s2}, η1, I , O, {A(y | x) : y ∈ O, x ∈ I })
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whereA1(a | 0)= A1(b | 0)= √2/2, A1(c | 0)= 0, A1(c | 1)= 1, A1 (a | 1)=
A1(b | 1)= 0, η = 1; and

A2(a | 0) = 1

4

[√
2−√2i 1+√3i

−1+√3i
√

2+√2i

]
,

A2(b | 0) = A2(a | 0)∗ = 1

4

[√
2+√2i 1−√3i

−1−√3i
√

2−√2i

]
,

A2(c | 0) = A2(a | 1)= A2(b | 1)=
[

0 0

0 0

]
,

A2(c | 1) = 1

2

[
1+ i 1− i

1− i 1+ i

]
.

We first check thatM1 andM2 are exactly QSMs, that is,A1(y | x) and
A2(y | x) satisfy (7):∑

y

A1(y | 0)A1(y | 0)† =
√

2

2
×
√

2

2
+
√

2

2
×
√

2

2
= 1;

∑
y

A1(y | 1)A1(y | 1)† = A1(c | 1)A1(c | 1)† = 1;

∑
y

A2(y | 0)A2(y | 0)†

= 1

16

[√
2−√2i 1+√3i

−1+√3i
√

2+√2i

][√
2+√2i −1−√3i

1−√3i
√

2−√2i

]

+ 1

16

[√
2+√2i 1−√3i

−1−√3i
√

2−√2i

][√
2−√2i −1+√3i

1+√3i
√

2+√2i

]

= 1

16

[
8 0

0 8

]
+ 1

16

[
8 0

0 8

]
=
[

1 0

0 1

]
,

∑
y

A2(y | 1)A2(y | 1)† = 1

4

[
1+ i 1− i

1− i 1+ i

][
1− i 1+ i

1+ i 1− i

]

= 1

4

[
4 0

0 4

]
=
[

1 0

0 1

]
.
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SoM1 andM2 are QSMs. Next we show thatpM1(v | u) = pM2(v | u) for all
wordsu, v with |u| = |v| ≤ 2. Because of

A2(a | 0)†A2(b | 0)† = 1

4

[√
2+√2i −1−√3i

1−√3i
√

2−√2i

]

×1

4

[√
2−√2i −1+√3i

1+√3i
√

2+√2i

]

= 1

8

[
3−√3i −√2(1+ i )√

2(1− i ) 3+√3i

]
,

A2(b | 0)†A2(a | 0)† = (A2(a | 0)†A2(b | 0)†)∗

= 1

8

[
3+√3i −√2(1− i )√

2(1+ i ) 3−√3i

]
,

A2(a | 0)†A2(a | 0)† = 1

8

[
2− 2i −√2(1+√3i )√

2(1−√3i ) −2− 2i

]
,

A2(b | 0)†A2(b | 0)† = (A2(a | 0)†A2(a | 0)†)∗

= 1

8

[
2+ 2i −√2(1−√3i )√

2(1+√3i ) −2+ 2i

]
,

A2(c | 1)†A2(c | 1)† =
[

0 1

1 0

]
,

A2(a | 0)†A2(c | 1)†

= 1

8

[
(2
√

2− 1+√3)− (1+√3)i −(1+√3)+ (2
√

2−√3+ 1)i

(2
√

2+ 1−√3)− (1+√3)i 1+√3− (2
√

2+√3− 1)i

]
,

A2(c | 1)†A2(a | 0)†

= 1

8

[
(2
√

2+ 1+√3)+ (1−√3)i 2
√

2− (1+√3)+ (1−√3)i

(1−√3)+ (2
√

2− 1−√3)i −1+√3− (2
√

2+ 1+√3)i

]
,

A2(b | 0)†A2(c | 1)†

= 1

8

[
−(1+√3)− (2

√
2+ 1−√3)i −(1+√3)+ (2

√
2− 1+√3)i

(1+√3)+ (2
√

2− 1+√3)i (2
√

2+ 1−√3)+ (1+√3)i

]
,
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A2(c | 1)†A2(b | 0)†

= 1

8

[
1−√3− (2

√
2− 1−√3)i −1+√3+ (2

√
2+ 1+√3)i

(2
√

2+ 1+√3)+ (−1+√3)i (2
√

2− 1−√3)+ (−1+√3)i

]
,

we obtain that

pM2(ab | 00)= ‖A2(b | 0)†A2(a | 0)†η1‖2 = 1

4
= pM1(ab | 00),

pM2(ba | 00)= ‖A2(a | 0)†A2(b | 0)†η1‖2 = 1

4
= pM1(ba | 00),

pM2(aa | 00)= ‖A2(a | 0)†A2(a | 0)†η1‖2 = 1

4
= pM1(aa | 00),

pM2(bb | 00)= ‖A2(b | 0)†A2(b | 0)†η1‖2 = 1

4
= pM1(bb | 00),

pM2(cc | 11)= ‖A2(c | 1)†A2(c | 1)†η1‖2 = 1= pM1(cc | 11),

pM2(ac | 01)= ‖A2(c | 1)†A2(a | 0)†η1‖2 = 1

2
= pM1(ac | 01),

pM2(ca | 10)= ‖A2(a | 0)†A2(c | 1)†η1‖2 = 1

2
= pM1(ca | 10),

pM2(bc | 01)= ‖A2(c | 1)†A2(b | 0)†η1‖2 = 1

2
= pM1(bc | 01),

pM2(cb | 10)= ‖A2(b | 0)†A2(c | 1)†η1‖2 = 1

2
= pM1(cb | 10),

andpM1(v | u) = pM2(v | u) = 0 for the rest cases with|u| = |v| = 2. For|u| =
|v| = 1, it is easy to check thatpM1(v | u) = pM2(v | u), and we omit the details.
However, we shall show thatpM2(cabb| 1000) 6= pM1(cabb| 1000). Indeed, we
have that

A2(b | 0)†A2(b | 0)†A2(c | 0)†A2(c | 1)†

= 1

8

[
2+ 2i −√2(1−√3i )√

2(1+√3i ) −2+ 2i

]

× 1

8

[
(2
√

2− 1+√3)− (1+√3)i −(1+√3)+ (2
√

2−√3+ 1)i

(2
√

2+ 1−√3)− (1+√3)i 1+√3− (2
√

2+√3− 1)i

]

= 1

32

[
3
√

2+ 2
√

3+√6− 2 2
√

3−√6−√2− 2√
6+ 2

√
3−√2+ 2 3

√
2− 2

√
3−√6− 2

]
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+ 1

32

[
(
√

6+ 2
√

3+√2− 2)i (3
√

2− 2
√

3+√6+ 2)i

(3
√

2+ 2
√

3−√6+ 2)i (2
√

3−√6+√2+ 2)i

]
.

So we obtain that

pM2(cabb| 1000)

= ‖A2(b | 0)†A2(b | 0)†A2(c | 0)†A2(c | 1)†η1‖2

=
∥∥∥∥∥ 1

32

(
3
√

2+ 2
√

3+√6− 2+ (
√

6+ 2
√

3+√2− 2)i√
6+ 2

√
3−√2+ 2+ (3

√
2+ 2

√
3−√6+ 2)i

)∥∥∥∥∥
2

= 8+√6+√2

64
,

but

pM1(cabb| 1000)=
∣∣∣∣∣
√

2

2
×
√

2

2
×
√

2

2
× 1

∣∣∣∣∣
2

= 1

8
.

Therefore, the answer for the problem proposed by S. Gudder is negative.

Certainly, there is positive example as follows.

Example 2. Let I = {0} andO = {a, b}. Suppose that

M1 = ({s}, η, I , O, {A(y | x) : y ∈ O, x ∈ I })
and

M2 = ({s1, s2}, η1, I , O, {A(y | x) : y ∈ O, x ∈ I })
whereη = 1, A1(a | 0)= 1/2, A1(b | 0)= √3/2; and

A2(a | 0)=
√

2

4

[
1 1

1 −1

]
, A2(b | 0)=

√
6

4

[
1 1

1 −1

]
.

Then one can check thatpM1(v | u) = pM2(v | u) for all input–output pair (u, v).
That is to say,M1 andM2 are equivalent.

However, we do not know yet what are the sufficient and necessary conditions
for the equivalence between two SQMs or QSMs.
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